

True RMS 3-Phase voltage monitoring relay

Description

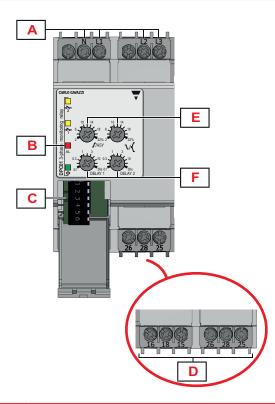
DPC01DM1K is a multifunction 3-phase mains monitoring relay.

It operates on 3P and 3P+N systems, monitoring phase loss and phase sequence, overvoltage and undervoltage, voltage asymmetry and torelance. Power supply provided by the monitored mains. Two independent delay functions, up to 30s, for over/under voltage and asymmetry/tolerance alarms.

Benefits

- Very high voltage values. Working in 750 and 1000 VAC systems.
- Adjustable voltage levels, asymmetry, tolerance and time delay. To allow a correct response to real alarm conditions.
- Output and status LED indication. For quick troubleshooting.
- Adjustable power ON delay. To avoid nuisance tripping at start-up.
- Ultra-high harmonic immunity. For very noisy environments.

Applications

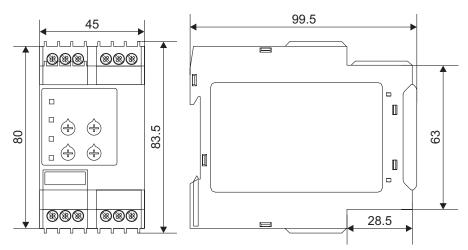

DPC01DM1K monitors the supply mains for mobile mining machinery and trains.

Main functions

- Monitoring 3-phase mains with 3 wires (3P) or 4 wires (3P+N).
- · Detection of the correct phase sequence, phase loss, asymmetry and tolerance.
- Front dial adjustable overvoltage, undevoltage, asymmetry and tolerance setpoints.
- Time delay.
- Two changeover relay outputs.

Structure

Element	Component	Function
A	Input terminals	Connection of the line voltages (neutral when present)
Yellow for relay output status		
В	Information LED	Red to signal alarm status
		Green for device ON
С	DIP-switches	Setting the nominal voltage, type of mains, power ON delay
D	Output terminals	2 x SPDT relay outputs
E	Setpoints dials	Overvoltage/asymmetry and undervoltage/tolerance setpoints adjustment
F	Delay time dials	Setting the alarm ON delay time



Features

General

Material	Polyamide (Nylon) or Phenylene ether + Polystyrene
Colour	RAL7035 (light grey)
Dimensions (W x H x D)	45mm x 80mm x 99.5mm
Protection degree	IP20
Weight	220 g (7.76oz)
Terminals	Cable size from 0.05mm ² to 2.5mm ² (AWG30 to AWG13), stranded or solid
Tightening torque	Max. 0.5Nm (4.425lb.in)
Terminal type	Double cage screw terminals

Power supply	Supplied by measured phases
Overvoltage category II (IEC 60664)	
Voltage range	750 and 1000 V _{L-L} AC ±15% (637 and 1150V _{L-L})
Frequency range 50Hz to 60Hz ±10% sinusoidal waveform	
Consumption	< 55 VA
Power ON delay	1 s ± 0.5 s or 6 s ± 0.5 s

Environmental

Operating temperature	-20° C to 50° C (-4° F to 122° F)
Storage temperature	-30° C to 80° C (-22° F to 176° F)
Relative humidity	5-95% non condensing
Pollution degree	2
Operating max altitude	2000 m amsl (6560ft)
Salinity	Non saline environment
UV resistance	No

Vibration/Shock resistance

Test condition	Test	Level
	Vibration response (IEC60255-21-1)	Class 1
Tests with uppeaked device	Vibration endurance (IEC 60255-21-1)	Class 1
Tests with unpacked device	Shock (IEC 60255-21-2)	Class 1
	Bump (IEC 60255-21-2)	Class 1
	Vibration random (IEC60068-2-64)	Class 1
Tests with packed device	Shock (IEC 60255-21-2)	Class 1
	Bump (IEC 60255-21-2)	Class 1

Class 1: monitoring devices for normal use in power plants, substations and industrial plants and for normal transportation conditions.

The packaging type is designed and implemented in such manner that the severity class parameters will not be exceeded during transportation.

Compatibility and conformity

CE-marking CE According to EN 60947-5-1. Complies to European LV directive 2014/35/EU and EMC directive 2014/30/EU: Immunity according to EN61000-6-2; Emissions accord- ing to EN61000-6-3
--

Inputs

Measuring ranges	
Measured variables	Phase sequence Phase loss Asymmetry Tolerance 3P: voltages V _{L12} , V _{L23} , V _{L31} 3P+N: voltages V _{L1N} , V _{L2N} , V _{L3N}
Nominal line range	750 and 1000 V _{L-L} AC ±15% (637 and 1150V _{L-L})
Nominal voltages (*)	3P: 750V, 1000V (delta voltage) 3P+N: 435V, 580V (star voltage)

(*) Note: connect the neutral only if it is intrinsically at the star centre.

Outputs

Number of outputs	2	
Туре	SPDT electromechanical relay with change-over contacts	
Logic	Output de-energized on alarm	
Contact rating	AC1: 8 A @ 250 VAC AC15: 2.5 A @ 250 VAC DC12: 5 A @ 24 VDC DC13: 2.5 A @ 24 VDC	
Electrical lifetime	≥50 x10³ operations (at 8 A, 250 V, cos φ= 1)	
Mechanical lifetime >30 x 10 ⁶ operations		
Assignment	2xSPDT: Output 1: overvoltage or asymmetry Output 2: undervoltage or tolerance 1 x DPDT: Output 1&2: any alarm	

Insulation

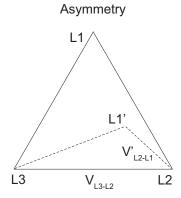
Terminals	Basic insulation
Inputs: L1, L2, L3, N to Output: 15, 16, 18, 25, 26, 28	2kVrms, 6kV impulse 1.2/50µs (basic)

Operating description

Device configuration

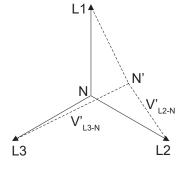
The relay operates when all the phases are present, the phase sequence is correct and the input voltage levels are within set limits.

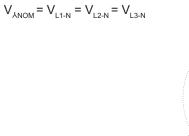
Delay on alarm is configurable by front dials, each one of the two alarms (under/over or asymmetry/tolerance) can be set with individual delay.


Asymmetry is an indicator of the mains quality and it is defined as the absolute value of the maximum deviation among the mains voltages, divided by the nominal voltage of the 3-phase system. The definition changes according to the voltage reference:

Mains type	Voltage asymmetry (%)
3P	$\frac{\max \Delta V_{ph-ph} }{V_{\Delta NOM}} \ge 100$
3P+N	$\frac{\max \Delta V_{ph-n} }{V_{ANOM}} \times 100$

Tolerance is another indicator of the mains quality and it is definied as the absolute value of the maximum deviation of the mains voltages from the nominal voltage, divided by the nominal voltage of the 3-phase system. The definition changes according to the voltage reference:


Mains type	Voltage tolerance (%)
3P	$\frac{\max V_{\Delta NOM} - V_{ph-ph} }{V_{\Delta NOM}} x \ 100$
3P+N	$\frac{\max V_{ANOM} - V_{ph-n} }{V_{ANOM}} \times 100$


$$\begin{split} \max \ | & \Delta V_{_{\text{PH-PH}}} | = |V_{_{\text{L3-L2}}} \text{-} V'_{_{\text{L2-L1}}} | \\ \max \ |V_{_{\Delta \text{NOM}}} \text{-} V_{_{\text{PH-PH}}} | = |V_{_{\Delta \text{NOM}}} \text{-} V'_{_{\text{L2-L1}}} | \end{split}$$

 $\max |\Delta V_{PH-N}| = |V'_{L3-N} - V'_{L2-N}|$

 $\max |V_{ANOM} - V_{PH-N}| = |V_{ANOM} - V'_{L3-N}|$

 $V_{\Delta NOM} = V_{L1-L3} = V_{L2-L1} = V_{L3-L2}$

Tolerance

 $\max |\mathsf{V}_{\scriptscriptstyle \Delta \rm NOM} - \mathsf{V}_{\scriptscriptstyle \rm PH-PH}| = |\mathsf{V}_{\scriptscriptstyle \Delta \rm NOM} - \mathsf{V'}_{\scriptscriptstyle L1-L3}| = |\mathsf{V}_{\scriptscriptstyle \Delta \rm NOM} - \mathsf{V'}_{\scriptscriptstyle L2-L1}| = |\mathsf{V}_{\scriptscriptstyle \Delta \rm NOM} - \mathsf{V'}_{\scriptscriptstyle L3-L2}|$

Tolerance

 $L1^{\circ}$

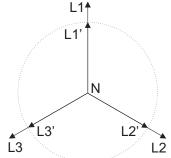
L1-L3

V_{L3-L2}

V_{L2-L1}

L2

L1,


V_{L1-L2}

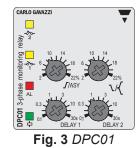
L3

 $\max |\Delta V_{_{\text{PH-PH}}}| = 0 \Rightarrow \text{ASY} = 0$

Fig. 1 Phase-phase monitoring

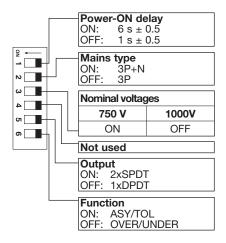
L3

$$\begin{split} \max |\Delta V_{\text{PH-N}}| &= 0 \Rightarrow \text{ASY} = 0\\ \max |V_{\text{ANOM}} - V_{\text{PH-N}}| &= |V_{\text{ANOM}} - V_{\text{L1-N}}'| = |V_{\text{ANOM}} - V_{\text{L2-N}}'| = |V_{\text{ANOM}} - V_{\text{L3-N}}'| \end{split}$$
Fig. 2 Phase-neutral monitoring


Overvoltage / ASY adjustment dial

Туроlоду	Linear selection from 2% to 22%	
Resolution	Ition 2% setpoint increase per notch	
Function	Relative overvoltage or asymmetry setpoint	
Undervoltage / tolerance adjustment dial		
Туроlоду	Linear selection from 2% to 22%	
Resolution 2% setpoint increase per notch		
Function Relative undervoltage or tolerance setpoint		
Delay 1 setting dial		

Delay 1 setting dial		
Typology	Logarithmic adjustment from 0.1s to 30s	
Resolution	From 100ms/notch at 0.1s to 10s/notch at 30s	
Function	Alarm ON delay setting for overvoltage or asymmetry	


Delay 2 setting dial			
Туроlоду	Logarithmic adjustment from 0.1s to 30s		
Resolution	From 100ms/notch at 0.1s to 10s/notch at 30s		
Function	Alarm ON delay setting for undervoltage or tolerance		

	DIP-switches			
Typology	6 switches			
	· Power ON delay			
	· Mains type			
Function	· Mains voltage			
	· Output configuration			

· Operating function

► Alarms

DPC01DM1K operates in 3 different modes depending upon the alarm type:

- Phase loss and incorrect phase sequence cause immediate output relays 1 and 2 de-energisation.

- Overvoltage or asymmetry triggering cause output 1 relay to turn OFF at the end of the set delay on alarm 1.

- Undervoltage or out of tolerance triggering cause output 2 relay to turn OFF at the end of the set delay on alarm 2.

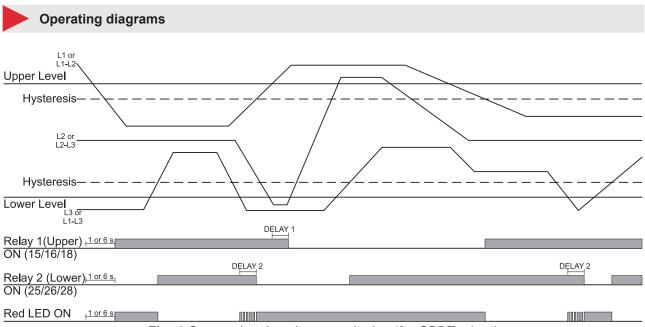
Over or asymmetry voltage/ under or tolerance voltage alarms			
put variables $3P: voltages V_{L12}, V_{L23}, V_{L31}$ $3P+N: voltages V_{L1N}, V_{L2N}, V_{L3N}$			
Reaction time	≤ 200ms + set delay ON alarm		
Undervoltage setting range	From -2% to -22%		
Overvoltage setting range	From +2% to +22%		
Asymmetry setting range	From +2% to +22%		
Tolerance setting range	From ±2% to ±22%		
Repeatability	0.5% reading		
Hysteresis	Setpoint between 2% and 5% \rightarrow Hys 1% Setpoint between 5% and 22% \rightarrow Hys 2%		
Delay ON	Adjustable from 0.1s to 30s Accuracy: from ±50ms at 0.1s to ±5s at 30s Repeatability: from ±10ms at 0.1s to ±1 at 30s		
Delay OFF	None		

Phase loss alarm			
Input variables	Voltage measurements L1-L2, L2-L3 and L3-L1		
Alarm setpoint	One phase ≤85% of the rated value (regeneration voltage detection)		
Restore setpoint	All phases >85% of the rated value + Hysteresis		
Reaction time	≤ 200 ms		
Hysteresis	2% fixed		
Delay ON	None		
Delay OFF	None		

Phase sequence alarm		
Input variables	Connection L1, L2, L3	
Reaction time	≤ 200 ms	
Delay ON	None	
Delay OFF	None	

Visual information

DPC01DM1K features 4 front LEDs which provide operation status information.


- Green LED is ON when the power supply is present.

- Red "AL" LED provides alarm status information: when an over/under voltage or asymmetry/tolerance alarm is triggered, and there is a delay on alarm elapsing, the LED blinks at 2Hz during the delay. If the alarm situation is still present at the end of delay, the LED turns steady ON.

If a phase is lost or the phase sequence is incorrect, the LED flashes fast at 5Hz.

- Yellow LED 1 is ON when the output 1 relay is energised.

- Yellow LED 2 is ON when the output 2 relay is energised.

Fig. 4 Over and undervoltage monitoring (2 x SPDT relays)

					CARLO GAVAZZI
L1			L1	L2	
L2			L3	L1l	_2
L3			L2	L3	_3
Relay 1 ON	1 or 6 s				
Relay 2 ON	1 or 6 s				
Red LED ON (DIN-rail vers					
Red LED ON (Plug-in versi					

Fig. 5 Total phase loss, phase sequence

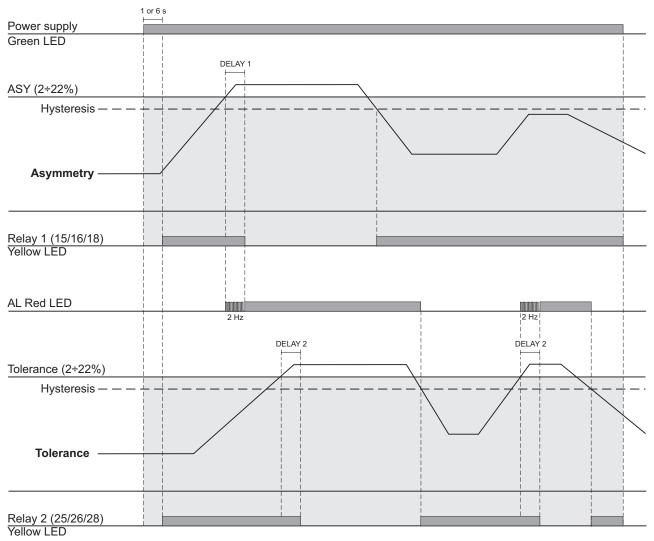
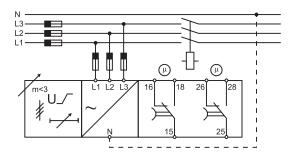



Fig. 6 Asymmetry and tolerance monitoring (2 x SPDT relays)

Connection Diagrams

References

COPYRIGHT ©2020 Content subject to change. Download the PDF: www.productselection.net